
J .  $ 'h id  Mech. (19C6), vol. 24, part 1, p p .  166-176 

Printed in Great Britain 
165 

On the analogy between thermal and rotational 
hydrodynamic stability 

By WALTER R. DEBLER 
Department of Engineering Mechanics, The University of Michigan 

(Received 10 June 1965) 

The correspondence between the eigenvalues for the problem of the onset of 
convection in a fluid confined between two horizontal plates and for the stability 
of viscous flow between two cylinders rotating at  almost the same angular velo- 
city has been known for some time. The recent work of Chandrasekhar (1961) 
has prompted the extension of the analogy to a larger group of rotating cylinder 
problems and their associated convection cases in which the primary tempera- 
ture distribution is parabolic. This paper shows the analogy between these two 
problems and presents data which give the corresponding temperature dis- 
tribution for a given ratio of angular velocities between the two cylinders. The 
equivalent Rayleigh numbers are listed for the Taylor numbers given by Chan- 
drasekhar (1954). The eigenfunctions for several of the parabolic temperature 
profiles are determined. These results show that the single vortex convection 
pattern becomes a double vortex for certain initial temperature distributions. 
The critical Rayleigh numbers for the stability of a layer of water which is near 
4 "C is also found by analogy. 

1. Introduction 
The classical problem of convective motion in a fluid heated from below 

(e.g. Pellew & Southwell 1940) has its counterpart in the secondary flow within 
a narrow annulus between two coaxial cylinders which are rotated a t  almost the 
same angular velocity (e.g. Taylor 1923). Two papers by Chandrasekhar (1954, 
1961) provide the basis for extending the analogy to other thermal and rotational 
cases. It is the purpose of this paper to point out how the data given by Chand- 
rasekhar (1954) can be applied to the stability of a horizontal layer of fluid 
with homogeneously distributed heat sources and the thermal stability of 
water a t  4 "C. 

Both of the latter problems were treated by Debler (1959) using a method given 
by Chandrasekhar (1954). Various boundary conditions were examined and 
some of the answers anticipate a few of the results of Sparrow, Goldstein & 
Jonsson (1964). The similarity of the form of the differential equations and boun- 
dary conditions treated by Chandrasekhar and Debler, and the curious corre- 
spondence between the results of the two problems suggested that the two systems 
of differential equations may have been interrelated. The explanation for the 
seemingly similar results is contained in Chandrasekhar (1961). The work of 
Davey (1962) contains a function which is the solution of a differential equation 
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that is adjoint to one which arises initially out of his treatment of the Taylor 
vortices. This function and the adjoint differential equation are equivalent to 
those coming from one of the cases considered in this paper. 

2. Governing equations 
Consider a horizontal layer of fluid of depth b, confined between two parallel 

planes x3 = 0 and x3 = b. These planes are solid, heat conducting and of constant 
temperature. The fluid has uniformly distributed heat sources. The equations of 
motion, heat conduction and mass conservation that are applicable to this 
problem are 

- A@ 
ZDI9 q 
I c z - z  - 

and appt + a(puj)pxj = 0, (3) 

in which the subscripts in the Navier-Stokes equations have values of 1, 2, and 
3 for the co-ordinate directions, and the repetition of a particular suffix implies 
the summation convention of tensor analysis; ui is the component of the fluid 
velocity in the ith co-ordinate direction; p is the mass density of the fluid; h a 
Lam6 constant; g the gravitational constant; p the pressure in the fluid; p 
and v the dynamic and kinematic viscosities; Si, the Kronecker delta, being zero 
for i + 3 and unity for i = 3; and A the symbol for the Laplacian operator. In  

Heat conducting, solid boundary 
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Heat csnducting, solid boundary 
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FIGURE 1. Co-ordinate system and mean temperature distribution 
in fluid layer. 

writing equation (2) the dissipation of mechanical energy into heat is considered 
small and therefore neglected. Also, in the foregoing equations I9 is the absolute 
temperature of the fluid, K is the thermal diffusivity; q is the time rate of heat 
generation per unit volume of fluid, k is the thermal conductivity, and D/Dt 
is the substantial derivative 

D p t  = apt  + ui aiax,. 
The co-ordinate system employed for this problem is presented in figure 1 

The density of the fluid can be expressed as 
along with the mean temperature distribution in the fluid layer. 

p = P J l -  4 8  - O,J} (4) 
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if the temperature differences in the fluid are small. In  equation (4) pm is the 
density at  the maximum temperature, 6,; and a is the coefficient of thermal 
expansion. 

Under equilibrium conditions the fluid layer is quiescent and the heat liberated 
by the fluid is carried to the boundaries by conduction alone. Accordingly, 
equations (1) and ( 2 )  can be solved for this condition and by assuming constant 
thermal properties one has 

(5) 

(6) 

(7) 

(8) 

@laxi = - 4 3 ( 9 F ) ,  (9) 

- 
U i  = 0, 

e = (aizk) (bx, - x;) + (x3/b)  (6,  - 6,) + eB, 
d8/dx3 = (Om-  6,) (2b* - 2x3) / (b  - b*)2, 

(6 ,  - 6,)/(2bb* - b2) = q/2k  = (Om-- 6, ) / (b  - b*)2, 

- 

in which the bar over a symbol denotes a mean quantity, and hence the value 
associated with the quiescent state. 6,  is the maximum temperature of the 
fluid layer while pure conduction is taking place, and 8, and 0 ,  are the tempera- 
tures of the upper and lower boundaries of the fluid, respectively. It will be 
assumed that the boundary temperatures will remain constant and the rate of 
heat generation will remain the same regardless of the motion of the fluid. 

Now consider small departures in the values of the temperature, pressure, 
density, and velocity from those existing during the conduction state. The values 
of these quantities will be 

6 = 8 + V ,  p = p+pt ,  p = P+p', ui = u;, (10) 

if a linear perturbation is employed, and the primed quantities are these per- 
turbations. 

The perturbed variables (10) are then substituted into equations (1) and ( 2 )  
and equations result from which a solution for the perturbations can be obtained. 
The solution will be examined to determine the conditions under which a per- 
turbed quantity can have a steady-state value other than zero. The equation 
resulting from the substitution of (10) into equation (1)  is 

In writing this equation the primed quantities are considered to be small and all 
products of perturbation quantities can be ignored because their magnitude 
will be very much smaller in comparison with the other terms in the equation. 
The result of this simplification is three scalar equations which are linear. 

The coefficient lip is approximated by l i p m  and it follows also that 

p' = p,( -a@). 

By properly differentiating equation (11) the pressure terms can be eliminated 
with the result that 

in which A12 = a2/ax; + a2/8xi. 
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The equation of continuity provides the justification for neglecting 

a(aui/axi)/ax3 

in comparison with Au,. With such an assumption (i.e. the Boussinesq approxi- 
mation) the last equation reduces to 

(ap t  - VA) AU, = gaA,,e‘. (13) 

A similar development can be applied to the energy equation so that it can be 

1 ae’ written in the form 
, ( z + u ( g )  = A & .  

The boundary conditions for these equations are 

0’ = 0 = U ,  = au,/ax, a t  x3 = 0, b. (15) 

It is convenient to non-dimensionalize the above equations and boundary 
conditions prior to attempting a solution. A suitable means of doing this is by 

The resulting equations are solved by assuming a solution of the form 

w = f8e‘T, (17)  

T = f?euT, (18) 

in which f is a function of x and y only, the functioiis 8 and 9 are dependent only 
on z ,  and a has real and imaginary parts a;. and ci, respectively. For a, greater 
than zero the solution (representing the disturbance) will grow exponentially 
with time, and for a, less than zero, the perturbation will decay. If vi is non- 
zero the perturbation quantities will be oscillatory. 

The final equations to be solved are 

ay/ax2 + azflayz + a y  = 0, 

[r - (D2 - a2)] T = - 8(2q  - 22) / (  1 - q),, 

[KV /V  - ( 0 2  - az)] [DZ - a23 8 = - Ta2R, 

(19 

(20) 

(21) 

A 

A 

in which a is the cell number, 
7 = b*/b, D = d/dz, 

and R = ( g a b 3 / v ~ )  (0, - BT). ( 2 2 )  

& = O = D & = T  at z = 0 , 1 .  (23) 

The boundary conditions are 
,-. 

For this problem the ‘principle of exchange of stabilities’ will be invoked so 
that a t  neutral stability the real and imaginary parts of a are both taken as being 
zero. 



Analogy between thermal and rotational stability 169 

3. Method of solution 

Fourier series expansion of the form 
The thermal boundary conditions will be satisfied by a function 9 having a 

00 

1’= C A,sinnn-x (n = 1,2,3 ,... ). 
n= 1 

This expression can be introduced into equation (21) with the result that 

in which 
( 2 5 )  

N, = (nn-)2+a2. 

Theboundary conditions o n 2  aresufficient to specify B,, C,, D, and En. The series 
equivalents for 9 and 8 can now be substituted into equation (20) yielding 

m 2a2R 
A,( -N,) sinnn-z = ___ A ,  (r,(y - z )  sinh ax 

n= 1 (1-7I2n=l 

+ D,(yz - 2 2 )  sinh ax + E,(yz - z2) coshaz + ~ 

If this equation is to be true, the coefficients of sin nnz on both sides of the equation 
must be equal for all n. The method for equating these coefficients is the usual 
one of Fourier series (i.e. multiplying both sides of equation (26) by sinmnx 
and integrating from zero to one, the range of x ) .  This results in a set of rn equa- 
tionsin n unknowns, A,. The infinite determinant of the coefficients of the An’s in 
these equations must be zero for a non-trivial solution to exist, so that 

in which 

The solution of equation (27) can be obtained by solving n x n determinants 
of finite size and noting that the solution converges rapidly for increasing values 
of n. Indeed Chandrasekhar (1954) shows that very good approximations are 
obtained for n = 1. In  considering the case for which the maximum temperature 
occurs a t  the midplane Debler (1959) found that (m/n) vanished for nz = n. 
Hence a 2 x 2 determinant had to be solved for the first approximation. Never- 
theless the method of solution is straightforward and easy. 

4. Analogous differential system 
The equations presented in the last section could now be solved for the various 

values of the parameters. This appears to be unnecessary in view of the corre- 



170 Walter R. Debler 

spondence between these equations and those treated in detail by Chandrase- 
khar (1954). To expedite the demonstration of the equivalence of the two systems 
of equations and boundary conditions, equations (20) and (21) with CT = 0 are 
rewritten as 

(D2-a2)2 W' = $', (29) 

(0' -a') $' = - W'h'( 1 + C Z ' ~ ) ,  (30) 

W' = 0 = DW' = $' a t  6 = 0,1,  (31) 

by introducing c =  1-2, $' =a2Rp, W ' = 8 ,  

and a' = l/(q- l), A' = -2a'(a2R). 

The equations governing the motion of the flow between two concentric 
cylinders with small spacing can be written, using the notation of Chandrasekhar 
(1954), as 

and (Dz-az)$ = - Wh, h = a2T, (33) 

with W = D W = $ - = O  for c = O  and 1. (34) 

The similarity in form between equations (32) and (33) and (29) and (30) is 
immediately apparent. In  a subsequent work Chandrasekhar (1961) shows im- 
plicitly that the differential systems (29)-(31) and (32)-(34) have the same 
eigenvalues since the matrix elements (cf. equation (27)) for the two systems are 
transposes of one another. 

5. Results 
In  view of what has been said, it is now possible to extend the applicability 

of the results of Chandrasekhar (1954). The appropriate data of Sparrow, 
et al. (1964) are not included in table 1 since their results by direct methods are in 
complete agreement with the values obtained by analogy if one keeps in mind 
the definition of R. The appropriate values of their parameter N, are given, 
however, for ease of comparison. 

All of the values of R given in the table can be converted to a Rayleigh number 
based on (8,-0,) by using equation (8). This substitution of (0,-8,) for 
(0, - 0,) seems to be very desirable for the second and third entries of column 5 
which correspond to cases for which the highest fluid temperature is at  the lower 
boundary but for which de/dz, is not zero at  this point. Consequently, 0, does 
not occur within the fluid layer. The first entry in column 5 has been left 
blank because a direct application of the analogue equations would yield a 
meaningless result. This situation arises out of the way the differential equations 
were non-dimensionalized. Indeed if the temperature difference in equation ( 2 2 )  
is replaced by its equivalent from equation (8) one has 

R = R'(b-b*)2/(b2-2bb*) = Bf( l -q)2 / (1-Z~)  

R' = Sab'(8, - O ~ ) / V K  in which 
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and A' in equation (30) is 

For 7 -+ - 00, A' -+ a2R' and R' -+ 1708. The second and third entries become, 
in terms of R', 2T = 1706 and #T = 1703, respectively. 

Chandrmekhar (1954) Analogy 
A 

I 7- 

a' 

0 
- 0.5 
- 0.75 
- 1.0 
- 1.25 
- 1.50 
- 1.60 
- 1.70 
- 1.80 
- 1.90 
- 1.95 
- 2.00 
- 2.25 
- 2.50 
- 2.75 
- 3.00 

a 

3.12 
3.12 
3.12 
3.12 
3.13 
3.20 
3.25 
3.34 
3.50 
3.70 
3.86 
4.00 
4.60 
5.05 
5-60 
6-05 

1,708.0 
2,275.3 
2,725.3 
3,390.3 
4,462.5 
6,417.1 
7,687.7 
9,432.6 

11,820 
14,943 
16,764 
18,677 
30,458 
46,192 
67,592 
95,625 

--co 
- 1.0 
- 0.333 

0 
0.200 
0.333 
0.375 
0.412 
0-445 
0.474 
0-487 
0.500 
0.556 
0.600 
0.636 
0.667 

- 
2,275 
1,817 
1,695 
1,785 
2,139 
2,402 
2,774 
3,283 
3,932 
4,298 
4,669 
6,768 
9,238 

12,289 
15,938 

TABLE 1. Equivalent Taylor and Rayleigh numbers 

0 
0.33 
0.60 
1 
1.67 
3 
4 
5.69 
9.1 

19.45 
38.45 

- 8.93 
- 5  
- 3.69 
- 3  

a3 

The value of R for 7 = 0 is associated with a temperature profile which has a 
derivative of zero at 7 = 0. This implies that there is zero heat transfer a t  this 
boundary under the unperturbed conditions. The boundary conditions which 
were applied to all of the problems whose solutions are tabulated in the table, 
state that a t  the onset of convection the temperature a t  the boundary does not 
change. However, the local heat transfer may be affected by the convection. 

If instead of applying the isothermal boundary condition at the lower bound- 
ary for the convection problem corresponding to a' = - 1, an adiabatic condition 
were specified (e.g. D p  = 0 instead of 9 = 0, at  z = 0, all other conditions the 
same) then the critical Rayleigh number is 1393 according to Debler (1959) 
at a cell number of 2.5. 

6. Eigenfunction 
Although the eigenvalues of the two sets of equations given by (29)-(31) and 

(32)-(34) have been shown to be the same, the associated eigenfunctions which 
specify the perturbation velocities are different. Taylor (1923) carried out some 
calculations for the equations given by (32)-(34) and found that when the 
ratio of the angular velocities between the outer and inner cylinders was - 1.5 
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(i.e. ,u = - 1.5 = a’+ 1, a’ = - 2.5) the eigenfunction corresponding to the radial 
velocity was zero at  a point in the gap between the two cylinders. 

This would mean that the fluid nearest the inner cylinder would not move into 
the region nearest the outer cylinder and that a double set of vortex rings would 
be generated. Taylor’s (1923) experiments which bracket the value of a‘ = - 2.5 
and include a’ = - 2.0 confirm this prediction. 

Debler (1959) determined the eigenfunction for the problem having y = 0.5 
which corresponds to a’ = -2.0. His calculations showed that the velocity 
eigenfunction was zero only at  the boundaries. Hence, one would expect that 
when convection occurs the fluid moves from the bottom plate to the upper one 
and then back down (i.e. a ‘single vortex ’). This motion was observed in the three 
experiments which were conducted. 

These experiments were performed by creating the temperature distribution 
in a layer of water through Joule heating with an alternating current. The fluid 
was confined between horizontal copper plates which acted as both the electrodes 
and the isothermal surfaces. A small amount of copper sulphate was added to the 
water to obtain practical resistance values. The experiments, preliminary in 
nature, yielded critical Rayleigh numbers which were higher than the 4669 
predicted by the analysis. But they did show that the resulting convection was 
a single vortex. Minute drops of a neutrally buoyant oil were injected into the 
layer during an experiment. If the droplets had no subsequent motion the heat 
dissipation was increased. At some power setting the droplets began moving in 
a path which took them from one plate to the other. After the necessary observa- 
tions had been made the power was slowly reduced until the motion of the 
droplets stopped. The critical Rayleigh numbers were determined by averaging 
the power settings for the observations under which the motion commenced 
and ceased. 

Despite the fact that Taylor’s (1923) and Debler’s (1959) experiments showed 
markedly different convection patterns for the same value of a’ it was believed 
that if the point of maximum temperature, y, were to be sufficiently high above 
the midplane, the fluid would not move from a small unstable layer into a large 
stable one. Yet convection should occur and would no doubt take the form of a 
double vortex or cell. 

A series of calculations were initiated to determine the eigenfunctions for 
various values of y. Below 9 = 0.546 the velocity eigenfunction is always of a 
single sign and above this value of y the eigenfunction changes sign in the 
interval. In  order to establish the value of y which would mark the change in 
the character of the convection, the second derivative, evaluated a t  the lower 
boundary, was examined for the various eigenfunctions. In  view of the con- 
ditions demanded by (23), the value of y was varied until the second derivative 
was zero. 

This demarcation value of 9 is very near to 0.55, which corresponds to the 
value of N, associated with the maximum value % tabulated by Sparrow, Gold- 
stein & Jonsson (1964). Indeed, it was thought possible that the vanishing of 
the second derivative at the lower boundary would occur when ’% was maximum. 
The calculations which were performed to determine the critical values of a 
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and R in the neighbourhood of 9 = 0.546 did not yield a relationship between 9 
and the critical R, from which &ny deductions could be made. However, this 
difficulty could have arisen from the degree of accuracy with which the numerical 
solution of the characteristic equation was performed. For 9 = 0.546 the mini- 
mum values of R for a = 4.51 were 6463.4,6360.7, and 6348.1 when determinants 
(cf. equation (27)) were used with n = 2, 3 and 4, respectively. A more precise 
determination of .the minimum R for various 7 indeed may show that % reaches 
its maximum when the type of convection pattern changes. 

0.2 0.4 0.6 08 1.0 
Z 

FIGURE 2. Eigenfunction 6 on an arbitrary scale, for various temperature distributions. 
Curve for ,u = - 1.5 from Taylor (1923), plotted with z = 1 -y, from comparison with 
7 = 0.6. 

Figure 2 gives the velocity eigenfunctions, plotted on an arbitrary scale, for 
some of the interesting cases which were examined. The curve for 7 = 0 could 
have been obtained from the work of Davey (1962) who treated several problems 
of Taylor vortices by studying the associated adjoint functions which, as is now 
apparent, are exactly the eigenfunctions for the Rayleigh problems in which the 
temperature profile is parabolic. In  relating the work of Davey (1962) to the 
present one i t  is necessary to employ the co-ordinate transformation z = & - x. 
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This figure also presents a curve showing the eigenfunction for the case which is 
analogous to 7 = 0.6 and was determined by Taylor (1923) whose independent 
variable, y, has been plotted as z through the change of co-ordinate z = 1 - y. 
These co-ordinate transformations are similar to the one employed writing 

0.2 0.4 0.6 0.8 1 .0 
2 

FIG- 3. Eigenfunction on an arbitrary scale for various temperature 
distributions given by 7. 

equation (30) and are necessary to give the same value for the independent 
variable when discussing ‘stable’ and ‘unstable’ regions of the fluid layer or 
gap. Indeed for the thermal problems under discussion the most stable tem- 
perature gradient occurs for the least values of z but for the problems of Davey 
(1962) and Taylor (1923) the least stable region is located at the smallest values 
of 2 and y, respectively. 
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The temperature eigenfunctions are shown in figure 3. In  order to determine 
these functions it was necessary to take a great many terms because of the slow 
decrease of the A,  which are necessary in equation (24). The fist 20 Am's are 
given in table 2 as determined with the aid of a digital computer and a simul- 
taneous linear equation subroutine. These values may be helpful to persons 
working on related problems. The coefficients in equation (25), for the boundary 
conditions (23) are also given here in order to  completely specify the eigenfunc- 
tions. Thus, 

1 9  

n7r a+(-1)"sinha 
ill: [ sinh2a-a2 

Bn=O, C =-  

D,  = - C,[l + ( - 1)"+l cosh a], E, = Cn[( - 1)"+l sinh a]. 

0 0.5 0.546 0.6 

1*000000 1~000000 1~000000 1~000000 
- 0'128095 - 1.393589 - 1.909101 - 3.301730 

0.219464 0.582551 3.286538 - 0.027394 
0.005611 0.051204 0.036684 - 0.810999 

- 0.002781 - 0.016627 - 0.034630 - 0.121270 
0.001016 0.012728 0.020136 0.079184 

0.000267 0.0035 13 0.005870 0.028881 
- 0.000162 - 0.001423 - 0.003357 - 0.023347 

0-000092 0.001230 0.002098 0.010916 
- 0.000060 - 0.000553 - 0.001319 - 0.009348 

0.000038 0.000512 0.000882 0.004712 
- 0.000026 - 0.000248 - 0.000595 - 0.004257 

0~000018 0-000242 0.000420 0.002273 
- 0.000013 - 0*000124 - 0.000298 - 0.002144 

0~000009 0.000126 0.000219 0.00 1 197 
- 0.000007 - 0.000067 - 0*000162 -0.001170 

0.000005 0.000070 0.000123 0.000677 
- 0*000004 - 0.000039 - 0.000094' - 0.000680 

0.000003 0.000042 0.000073 0.000405 

Ratio of Fourier coefficients to A, for various temperature distributions 

- 0.000552 - 0.004428 - 0.010184 - 0.067351 

7. Water at 4 "C 
The density characteristics of water near 4 "C give rise to a stability problem 
which resembles those just discussed. In  the range between 0 and 8 "C the tem- 
perature-density relationship for water can be closely approximated by 

(6 - 4)2 = - 1*25( lo5) (p  - 0.999973). 

If one has a layer of water in which the temperature of 4°C occurs a t  some 
elevation and which is situated between two rigid, horizontal, isothermal 
boundaries separated by a distance b, the governing equations for the distur- 
bances which result are 

( P - a 2 ) 2 @  = (1 - z / r* )  T (35) 

and (02-az)P = -d(Za2Cr*) 136) 

for @ = O = D @ = T  a t  z = O , l .  (37) 
- 
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The co-ordinate system is the same as that in figure 1; however, for the situa- 
tion now under discussion there is a linear temperature gradient given by 

e = 40- (~ , -7 *b )p  

in which /3 = (0, - 4)/q*b = (8, - O,)/b 

and q*b is the elevation above the lower surface at  which 4 "C occurs. The charac- 
teristic parameter C is given by in 

c = gp2b5/K,Uo 

in which the terms in the denominator are evaluated at  4 "C and 

w = 1-25 ( lo5) ("C)$ cm3/g. 

The dependent variables are related to the perturbed temperature and velo- 
city (cf. equation (10)) by 

8' = (0, - 0,) Q e ~ 7  = {(eB - 6T)/2a2Cq*) Q e g T  

and us = (+) &f euT 

by means of a series of steps involving non-dimensionalization and separation of 
variables similar to those given in 9 2. 

The linear variation in the temperature in the undisturbed state would be the 
case for heat conduction across the fluid layer, provided that lc is constant. 
Because the temperature gradient in the fluid, p, occurs a5 the square in the 
parameter C it  is immaterial in which direction the heat is flowing. 

The form of equations (35) and (36) can be compared with equations (32) and 
(33) to obtain the critical parameters from table 1 or other sources. For example, 
table 1 gives the solution for a' = - 1 as being a = 3.12 and T = 3390.3. Thus 
for q* = 1, a = 3.12 and 2C(1) = 3390.3 or C = 1695. 

The author wishes to thank Professor C.-S. Yih who suggested an investigation 
of fluid stability for a non-linear temperature distribution. Professor Yih's 
guidance and the initial support of the Army Research Office (Durham) were 
most helpful in this work. The author is also indebted to Dr J.T.Stuart who 
pointed out the relevance of Davey's work (1  962) and suggested that the special- 
ized case of the problem first treated in 97,  q* = 1, might be generalized easily 
in a manner as presented herein. 
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